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The article presents the results of a numerical solution of the problem of explosion in silicate rock taking 
into account melting, polymorphic phase transition, and various kinds of brittle failure. We show that phase 

transition provides an effective increase in the stability of a medium to explosive effect, while cracking 

processes lead to the formation of a stable two-wave structure. A relationship between the destruction 

parameters and the structure of shock-wave elastic motion is established. We estimate the effect of phase 

transitions and failure on the spectrum of acoustic emission initiated by explosion. 

In [1 ] results are presented concerning a solution of the problem of explosion in a medium undergoing 

phase transition, but without accounting for strength characteristics. Our investigation is concerned with the prob- 

lem of the propagation of a shock wave in a medium that, along with phase transition, experiences different kinds 

of failure, since comparison of our results with those obtained in [1 ] makes it possible to estimate the validity of 

hydrodynamic approximation in calculations of explosion in a solid medium. However, the results obtained are of 

interest in their own right, beyond the scope of [1 ]. 

We present the results of numerical calculations of unsteady motion of a destructible medium having central 

symmetry initiated by an energy source in the form of a sphere of radius r -- 1 m filled with a perfect gas with 7 -- 

1.25 and density P0 = 102 kg/m3. At time t -- 0, the internal energy in the sphere is distributed uniformly. The 

initial conditions of loading correspond to those used in [ 1 ]. We consider two variants of the problem, which differ 

by the functions that determine the pressure in the medium surrounding the source. In the first variant we use 

relations from [ 1 ] that represent the equations of state allowing for the quartz-stishovite phase transition. In the 

second variant we use the equation of state for quartz, also from [1 ], but without account for phase transition. In 

both variants, we use the model of brittle failure proposed in [2 ]. We assume that phase transition does not exert 

a direct effect on the elastic and strength characteristics of the medium. In the region of elastic deformations 

3 
X < 2/3r  2, (1) 
i=1 

where Y is the limit of elasticity, and S i a r e  the components of the deviator of stresses, which are connected with 

the components of the tensor of deformations by Hooke's law. When (1) is violated, brittle destruction occurs, and 

the medium is crushed and reduced to rubble. When stresses exceed the ultimate breaking strength ar > ak or a9 

> ak, where ar and a9 are the radial and tangential stresses, cracking takes place. In that case, the internal and 

kinetic energies, stresses, and specific volume undergo changes in jumps. The magnitudes of these jumps are 

calculated from relations given in [2 ]; the values of cr k and Y are also taken from that work. 

The problem is solved with the help of a numerical method of continuous calculation with an artificial 

viscosity. The algorithm is based on the use of a fully conservative Lagrange difference scheme, given in [3 ], that 

approximates a system of partial differential equations. This system describes the motion of the medium and 
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Fig. 1. Time dependences of different kinds of energy: 1) of the source; 2) of 

the melt; 3) of the region of fragmentation; 4) of the region of cracking; 5) 

elastic energy. 

represents the mass, momentum, and energy conservation laws. Being indivergent, such a scheme makes it possible 

to judge the accuracy of computations and the quality of numerical experiments on the basis of energy balance. 

After the passage of 30,000 time layers, the energy disbalance amounts to 0.12% of the original energy. The 

calculation covers a wide range of shock-wave loading that ensures a variety of state transformations of the medium, 

from melting and polymorphic phase transition to different kinds of failure up to the emergence of an elastic wave. 
The results of numerical calculations are presented in Figs. 1-4, where the solid lines relate to the first 

variant, and the dashed lines to the second. All of the quantities are given in dimensionless form, with the unit of 

distance being R0 = 1 m, the unit of velocity Co = 10 a m/sec, the unit of time to = Ro/Co, and the unit of stress 

a0 --P0C0 z, where a0 = I08 Pa (l kbar). Time dependences of different forms of energy are presented in Fig. 1 in 

units (E0) of source energy; the trajectories of the contact boundaries, perturbation front, and elastic precursor 

are given in Fig. 2. From these figures it is seen that calculations gave a sequence of shock wave-induced 

transformations of the medium that is qualitatively consistent with physical concepts, namely, the formation of a 

system of concentric regions differing in their physicomechanical properties. It is seen that each of these regions, 

except for the region of elastic motion (see below), goes through three stages in its development. The mass and 

energy of the region increase in the first stage, its mass is stabilized, its energy is decreased and partially 

transferred to the next incipient region in the second stage, and its energy and boundary are stabilized in the third 

stage. Near the source, at the shock wave front (SWF), the medium experiences a quartz-stishovite phase transition, 

but does not experience it in the second case. Moreover, if the specific internal energy exceeds the specific energy 

of melting, which was assumed to be identical for the two phases and equal to 0.97-l0 a kJ/kg, the medium is 

considered a melt. Its motion is calculated in a hydrodynamic approximation. It is assumed that the stishovite does 

not change to quartz. In Fig. 1 curves 1 represent the energy of the source, and curves 2 pertain to the energy 

contained in the melt. In Fig. 2, curves 1 represent the trajectories of the source boundaries, and curves 2 pertain 

to the trajectories of the boundary of the melt. As the intensity of the shock-wave decreases sufficiently, the process 

of melting terminates; phase transition and crushing of the stishovite occur in the first case and crushing of the 

quartz in the second. As the wave becomes weaker, the phase transition ceases, and quartz crushing occurs in both 

cases at the SWF. In Fig. 2, curve 3 represents the trajectory of the phase interface, and curves 4 show the 

trajectories of the boundary of the fragmentation region. In Fig. 1 curves 3 pertain to the energy contained in the 

region of fragmentation. Initially the fragmentation occurs at the SWF, and the velocity of the front exceeds the 

speed of sound. Later on, as the loadings at the SWF decrease, the fragmentation-front velocity drops and becomes 

subsonic. And at once it starts to generate an elastic wave. As the boundary of the fragmentation region is slowed 

down, the energy of elastic motion increases (Fig. l, curves 5). However, with a further decrease in loading, the 

mechanism of failure changes. Criterion (1) does not hold any longer, but tangential stresses exceed the ultimate 
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Fig. 2. Trajectories of contact boundaries and of the stress amplitudes: 1) 

source; 2) melt; 3) stishovite-quartz phase interface; 4) fragmentation region; 

5) region of radial cracks; 6) front of basic perturbation; 7) elastic precursor. 

strength: a0 > ok. Radial cracks are formed. The magnitudes of the stresses and of the internal energy undergo 

changes in jumps; the kinetic energy of the medium also increases in a jumpwise fashion, leading to an increase 

in the failure-front velocity, which attains the speed of sound. This is accompanied by a decrease in the energy of 

elastic motion (Fig. 1, curves 5), ensuring a nonuniform decrease in the mass velocity at the perturbation front, as 

shown by curves 1 in Fig. 3. The upper part of the figure shows the arrival-time dependences of the mass velocity 

at the front of the main perturbation (curves 1) and of the mass velocity of the precursor (curves 2), and the lower 
part contains the arrival-time dependences of the peak values of the stresses at the front of both the main 

perturbation (curves 3) and the precursor (curves 4). Tangential stresses are depicted by crossed lines; they are 

not shown for the main perturbation front, since in this case they differ little from the radial ones. It is seen that 

the nature of the dependence of the stress amplitudes on time changes qualitatively with the development of motion. 

This change is associated not with a change in the failure mechanism, since it occurs earlier, but with the fact that 

the SWF velocity, which is supersonic in the beginning, becomes equal to the elastic shock wave velocity. 

Despite allowance for phase transitions, the state equation used ensures behavior of the shock adiabatic 

such that an increase in shock-wave loading is accompanied by a monotonous increase in shock-wave velocity. 

Therefore, in both the present work and [1 ] phase transition does not ensure shock-wave splitting [4]. When the 

SWF velocity exceeds the speed of sound, the motion is characterized by an irregular multiwave structure generated 

by repeated motions of the source, which is also typical of mass explosion in a medium devoid of strength [5 ]. In 

such a medium, a regular two-wave structure is brought about by the mechanism of cracking already after the 

cessation of phase transition and fragmentation. Its incipience and development are shown in Fig. 4, which displays 

velocity profiles and diagrams of stresses (in the lower parts of the figures) for different time instants. Here again 

the diagrams of tangential stresses are depicted by crossed lines. Figure 4a corresponds to the time of the incipience 

of cracks and of a given wave structure, and Fig. 4b corresponds to the time at which the energy content of the 

crack region is maximal, while Fig. 4c corresponds to the time of stoppage of the cracking front and emergence of 

the second wave into the elastic region of the first variant. For pure quartz this instant is reached later (see below). 

It is seen that before the destruction front an elastic wave propagates in which the radial stresses are three times 

larger than the tangential ones (Fig. 3, curves 4). This region is followed by a zone of open cracks in which 

tangential stresses relax to zero and radial stresses decrease considerably leading to a rise in the stress curvesand 

dip in the velocity profile shown in Fig. 4b and 4c. This zone is followed by a main wave of large-amplitude stresses, 

which close the cracks but do not make the medium solid. In this wave different kinds of stresses differ little in 

magnitude. The change in the energy in the region of cracking is shown in Fig. 1 by curves 4; the trajectories of 

its boundaries are given in Fig. 2 by curves 5. 

720 



log u 

1 

0 

-,o//' 
! 

0 0.5 /log t 

Fig. 3. Dependences of peak values of velocity and stresses on the time of the 

perturbation wave arrival: 1) mass velocity at the front of the main wave of 

disturbance; 2) mass velocity of the precursor; 3) amplitude of stresses at the 

front of main disturbance wave; 4) amplitude of the stresses of the precursor. 

These results agree qualitatively with the results presented in [6 ], where numerical calculation of an 

explosion in granite is considered. The authors of [6 ] used the Eulerian representation of the medium and an 

elastoplastic model of destruction: they also noted the appearance of a two-wave structure during the formation of 

radial cracks in the process of shock-wave loading. 

Thereafter, when the loadings are decreased appreciably, the boundary of the crack region slows down, 

failure ceases, the energy of the region decreases (Fig. 1, curves 4), and the energy of elastic motion increases 

again (Fig. 2, curves 5). Then, all kinds of energy are stabilized. Motion in the vicinity of the source continues, as 

does the emission of elastic energy. Calculations show that most of the original energy of an explosion is spent in 

phase transformations and failure. The fraction of elastic energy is 8 % of the original one. However, despite such 

smallness, the numerical calculations do not correspond to solutions obtained in acoustic approximations [7, 8 ]. In 

those works, elastic energy is emitted in the form of a system of two elastic shock waves in which the peaks of mass 

velocity and of all kinds of stresses coincide in space. 

The emergence of the second elastic wave is accompanied by a decrease in the mass velocity amplitude at 

its front (Fig. 3, curves 1), by an increase in the amplitude of radial stress (Fig. 3, curves 3), as well as by the 

establishment in it of the same relationship between the peak values of ar and a 0 as in the precursor wave. This 

relationship is in line with [9, 10 ], where analytical solutions are given for the problem of an elastic shock wave 

generated by pressure in a cavity. The double-humped peak of the radial stresses of the second wave in Fig. 4c 

was formed under the action of a source-induced secondary pulse that ensured the secondary involvement of the 

processes of cracking responsible for the difference in the ar and cr 0 profiles. Analysis of the results of numerical 

calculations made it possible to obtain an approximate equation that relates the distance between the first and 

second elastic waves to the failure parameters: 

;~ = ( R ,  - n s )  (5a~/a.)  I /Z/ ( l  - (&r~/a.) l / z ) .  (2) 

Here R r is the radius of the crack region, R s is the radius of the fragmentation region, and a.  is the stress acting 

on the boundary of the region of cracks. In the case of phase transition, the value of 2 is by 14.8~ smaller than 

that for pure quartz. 
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Fig. 4. Velocity profiles and diagrams of stresses for three time moments: a) 

beginning of the period of the formation of cracks; b) middle of the period; c) 

stoppage of the front of cracking. 

r 

The emission of the second elastic wave is accompanied by the establishment of peak stresses ar and ag, 

whose amplitudes differ little; the peak is associated with an immobile boundary of the region of cracks and is in 

accord with the maximum of pressure and density. The amplitudes of the mass velocity and radial stress correspond 

to the second wave. The front of the third peak is followed by an irregular multiwave structure of motion directed 

from the center. When this motion is weakened sufficiently, an opposite motion directed to the center is formed, 

during the development of which split-off failure can occur, since the medium is sufficiently loaded. This assumption 

is made on the basis of observations [ I 1 ] according to which the explosion cavity always caves-in in brittle rocks, 

with the dimensions of caving always exceeding the radius of the cracks region. Apparently, these failure also 

generate elastic waves whose amplitudes are smaller than the amplitudes of the first two waves. 

It is to be expected that the process of the split-off failure completes the formation of an acoustic emitter 

generated by an explosion. Using the results obtained and the uncertainty principle [12 ], according to whiCh the 

width of the spectrum of the AH signal and its duration AT are connected by the relation AHA~ -- const, we can 

estimate the effect of processes in the near and middle explosion zones on the spectrum of acoustic emission. In 

this case the duration of the signal is Ar - R  x (Rx is the radius of the emitter equal to the radius of the region of 

split-off cracks), since internal motions of the emitter, not having extraneous sources, are transformed into 
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emission. From this it is clear that phase transitions ensure broadening of the spectrum, as they lead to a decrease 

in the radius of the failure region (see Fig. 2). Providing a considerable growth of the failure region and the 

dimensions of the emitter, cracking processes lead to narrowing of the spectrum. Evidently, these processes 

determine the detailed structure of the acoustic emission spectrum. Thus, in the absence of either phase transitions 

or cracking, the emission will have a spectrum of wide-range noise. In this case the spectral density has a maximum 

at the low-frequency boundary of the emission band and decreases with an increase in frequency. Taking account 

of the fact that in our case the second elastic peak exceeds the remaining ones, we, proceeding from the results of 

[ 12 ], can assume that this maximum corresponds to the frequency f = Cl/2, where CI is the longitudinal speed of 

sound, and that it is located near the band center. (Here, it is taken into account that in the case of a confined 

explosion a signal, whose frequency is determined by Cl, can propagate in air after emergence from the day surface.) 

If we avail ourselves of the relationship between R r and Rs suggested in [ t l  ], we can easily obtain the estimate 

[ - R  I/2, which is of interest for experimental verification. The same estimate is obtained for the width of the 

spectrum. Here P is the hydrostatic pressure, which in our case is equal to zero. If there are both cracking and a 

phase transition that ensures splitting of the shock wave, then, since cracking leads to additional shock-wave 

splitting, the spectral density at the center of the band will have several peaks with close values of the maxima. 

However, we failed to check this by numerical experiment. We had to interrupt calculation even before the stage 

of splitt-off failure, because the equation of state suggested in [1 ] was quite satisfactory in the near and middle 

explosion zones, but turned out to be unsatisfactory in the elastic region at small degrees of compression at loadings 

smaller than rr 0. Under such conditions it leads to nonphysical values of pressure and needs modification. 

As seen from the figures, there is no qualitative difference between the results of calculations by the two 

variants, despite the qualitative difference between the equations of state used in them. Quantitative differences 

arise from allowance for the quartz-stishovite phase transformation. Figure 1 shows that phase transition virtually 

does not influence the process of energy transfer from the source to the surrounding medium but exerts a substantial 

influence on the transfer of energy in it. It is seen that the energy content of the melt in the presence of stishovite 

greatly exceeds that for pure quartz. At the same time, the relationship between the energy contents in the region 

of fragmentation is reversed. This is explained by the fact that the main mass of the stishovite formed is contained 

in the melt, and also by large energy expenditures for this transformation. Stishovite is a highly dense phase, the 

speed of sound in which is two times larger than in quartz, affording this rock good accumulating properties. This 

ensures an effective increase in the strength of a medium that undergoes such a transition: smaller peak values of 

stresses and mass velocity in each fixed time instant, earlier appearance of the elastic precursor and cessation of 

destruction, and smaller failure regions as compared with the case of pure quartz. For the first variant, the 

thicknesses of the layers of melt, crushed rock, and cracks are, respectively, smaller by 102.7%, 36.7%, and 10% 

than the values for the second variant, while the dimensions of the cavities of explosion coincide. 

Comparison of the results of the present work (obtained for the first variant and corresponding to the near 

zone of explosion) with the results presented in [1 ] reveals qualitative agreement of the time dependence of the 

amplitude of pressure and velocity profiles. However, we did not obtain the intersection of velocity profiles shown 

in [I ]. The difference is explained by energy expenditures for fragmentation, which was taken into consideration 

in our calculation and decreased the velocity profiles for comparable times. 

The foregoing permits us to make the following conclusions. 

1. The use of hydrodynamic approximation for calculating unsteady motions of a strong medium is 

admissible only in the near zone of explosion, when the SWF velocity exceeds the speed of sound where melting 

occurs. In the case of fragmentation, it permits one to obtain only rough estimates of the SWF parameters. 

2. Calculation of motions in the near zone, if the medium in it undergoes cracking, or in the middle zone, 

when the SWF velocity becomes equal to the speed of sound and an elastic precursor is formed, requires that the 

strength properties of the medium and the mechanisms of its destruction be fully taken into account. 

3. In contrast to phase transitions, the processes of cracking always lead to shock-wave splitting. Therefore, 

a regular two-wave structure of shock-wave elastic motion can be connected with phase transition only under 

conditions that prevent the formation of cracks, namely either in the case of corresponding hydrostatic loading [11 ] 

or when the breaking strength is higher than the strength of compression. 
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4. When cracking is present and phase transition ensures shock-wave splitting, one should expect the 

appearance of a richer regular wave structure. 
5. The structure of the shock-wave elastic motion generated by an explosion in a solid medium contains 

essential information about the processes occurring in the near and middle zone of explosion: specific features of 
phase transitions, forms and specific features of failure, and the dimensions of failed regions. 

6. The effect of processes occurring in the near and middle zones of an explosion on the characteristics of 
acoustic emission generated by it is unambiguous. Phase transitions ensure broadening, while cracking processes 
cause narrowing of the emission band. The effect of these processes on the detailed structure of the acoustic 

spectrum requires further investigation. 
7. The state equation suggested in [1 ] is applicable for describing the behavior of a substance in a wide 

range of shock-wave loading. However, for loading smaller than 10 8 Pa it gives nonphysical values of pressure and 

needs modification. 

N O T A T I O N  

7, specific heat ratio of a perfect gas; t, dimensionless time; to, unit time; P0, unit density; r, dimensionless 
distance; Ro, unit of distance; u, dimensionless velocity; Co, unit velocity; Y, elastic limit; Si, components of stresses 

deviator; ak, ultimate breaking strength; at, dimensionless radial stress; a,~, dimensionless tangential stress; ao, 

unit stress; E0, energy of the source of explosion; 2, spacing between elastic shock waves; Rs, radius of 

fragmentation region; Rr, radius of crack region; a.,  stress acting at the boundary between crack region and region 
of elastic motion; /, frequency corresponding to the maximum of the spectral density of acoustic signal; Cb 
longitudinal speed of sound; P, hydrostatic pressure; AH, width of the spectrum of acoustic emission; At, duration 

of acoustic signal; Rx, radius of an acoustic emitter generated by explosion. 
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